

Physics Practice Set –1 Ch-8 Electromagnetic Waves MEDIUM

C.B.S.E BOARD EXAM

- 1. The electric field intensity produced by the radiations coming from 100W bulbs at a 3m distance is E. The electric field intensity produced by the radiations coming from 50W bulb at the same distance is
 - (a) $\frac{E}{2}$

(b) 2E

(c) $\frac{E}{\sqrt{2}}$

- (d) $\sqrt{2E}$
- **2.** Which of the following electromagnetic waves is used in medicine of destroy cancer cells?
 - (a) Infrared rays
- (b) Gamma rays
- (c) Visible rays
- (d) Ultraviolet rays
- 3. A linearly polarised electromagnetic wave given as $E = E_0 \hat{\imath} \cos(kz \omega t)$ is incident normally on a perfectly reflecting wall at z = a. Assuming that the material of the optically inactive, the reflected wave will be given as
 - (a) $\overrightarrow{E_r} = -E_0 \hat{i} \cos(kz \omega t)$
 - (b) $\overrightarrow{E_r} = E_0 \hat{i} \cos(kz + \omega t)$
 - (c) $\overrightarrow{E_r} = -E_0 \hat{i} \sin(kz + \omega t)$
 - (d) $\overrightarrow{E_r} = E_0 \hat{i} \sin(kz \omega t)$
- **4.** The conduction current is the same as displacement current when the source is
 - (a) AC only

(b) DC only

(c) either AC or DC

(d) neither DC nor AC

Short Answer Type Qs (2 & 3 Marks)

- **5.** Electromagnetic waves with wavelength
 - (i) λ_1 is used in satellite communication.
 - (ii) λ_2 used to kill germs in water purifier.
 - (iii) λ_3 used to detect leakage of oil in underground pipelines.
 - (iv) $\lambda_4\,\text{used}$ to improve visibility in runways during fog and mist conditions.

Physics Practice Set –1 Ch-8 Electromagnetic Waves MEDIUM

C.B.S.E BOARD EXAM

- (a) Identify and name the part of electromagnetic spectrum to which these radiations belong.
- (b) Arrange these wavelengths in ascending order of their magnitude.
- (c) Write one more application of each.
- Show that the magnetic field B at a point in between the plates of a parallel-plate capacitor during charging is $\frac{\epsilon_0 \mu_r}{2} \frac{dE}{dt}$ (symbols having usual meaning).
- poynting vectors \vec{S} is defined as a vector whose magnitude is equal to the wave intensity and whose direction is along the direction of wave propogation. Mathematically, it is given by $\vec{S} = \frac{1}{\mu_0} \vec{E} \times \vec{B}$. Show the nature of \vec{S} vs t. graph
- 8. Show that average value of radiant flux density 'S' over a single period 'T' is given by S= $\frac{1}{2c\mu_0}E_0^2$.

Long Answer Type Qs (5 Marks)

- **9.** (a) How is electromagnetic waves produced? What is the nature of electromagnetic waves?
 - (b) The magnetic field in a plane electromagnetic wave is given by $B_v = 8 \times 10^{-6} \sin[2 \times 10^{11}t + 300 \pi x] T$
 - (i) What is the wavelength and frequency of the wave?
 - (ii) Write an expression for the electric field.
- **10.** A plane EM wave travelling along z direction is described by $\vec{E} = E_0 \sin(kz \omega t) \hat{\iota}$ and

$$\vec{B} = B_0 \sin(kz - \omega t) \hat{j}$$
 .show that

(a) The average energy density of the wave is given by

$$u_{av} = \frac{1}{4} \varepsilon_0 E_0^2 + \frac{1}{4} \frac{B_0^2}{\mu_0}.$$

(b) The time averaged intensity of the wave is given by

$$I_{av} = \frac{1}{2} c \epsilon_0 E_0^2.$$

Physics Practice Set –1 Ch-8 Electromagnetic Waves MEDIUM

HINTS AND ANSWER

- **1.** (c)
- **2.** (b)
- **3.** (b)
- **4.** (c)
- **5.** (i) Microwave is used in satellite communications. So λ_1 is the wavelength of microwave.
 - (ii) Ultraviolet rays are used to kill germs in water purifier So λ_2 is the wavelength of UV rays.
 - (iii) X-rays are used to detect leakage of oil in underground pipelines .So λ_3 is the wavelength of X-rays.
 - (iv) Infrared is used to improve visibility on runways during fog and mist condition. So, it is wavelength of infrared waves.
 - (b) Wavelength of X-rays < < wavelength of U V < wavelength of infrared < < wavelength of microwave. $\Rightarrow \lambda_3 < \lambda_2 < \lambda_4 < \lambda_1$
 - (c) Microwave is used in radar.

UV is used in LASIK eye surgery.

X-rays is used to detect a fracture in bones.

Infrared is used in optical communication.

- $6. \quad \frac{\mu_0 \varepsilon_0 r^2}{2} \frac{dE}{dt}$
- 7. $\Rightarrow S = \frac{E_0 B_0}{\mu_0} \sin^2 \left(\omega t kx\right) \hat{i}$

Since $\sin^2(\omega t - kx)$ is never negative, $\vec{S}(x,t)$ always point in the positive X-direction, i.e, in the direction of wave propagation.

The variation of |S| with time T will be as given in the figure below:

- **8.** $S_{av} = \frac{E_0^2}{2\mu_0 C}$
- **9.** (A) An electromagnetic wave is a waves radiated by an accelerated charge and propagates through space as coupled electric and magnetic field, oscillating perpendicular to each other and to the direction of propagation of the waves.

Physics Practice Set -1 Ch-8 Electromagnetic Waves MEDIUM

C.B.S.E BOARD EXAM

(B) (i)0.0067m

(ii)
$$E_0 = 2400 \text{ V/m}$$

$$E_z$$
= 2400 sin (2 × 10¹¹t + 300 π x) V/m

10. (A) Expression type Question

$$u_{av} = u_E + u_B = rac{1}{4} \epsilon_0 E_0^2 + rac{1}{4} rac{B_0^2}{\mu_0}$$

(B) Expression type Question

$$I_{av}=rac{1}{2}c\epsilon_0 E_0^2$$

You Tube Solutions For JEE and NEET