

C.B.S.E BOARD EXAM

- 1. Consider the two idealized systems: (i) a parallel plate capacitor with large plates and small separation and (ii) a long solenoid of length L>>R, radius of cross-section. In (i) →E is ideally treated as a constant between plates and zero outside. In (ii) magnetic field is constant inside the solenoid and zero outside. These idealised assumptions, however, contradict fundamental law as below:
 - (a) Case (i) contradicts Gauss's law for electrostatic fields.
 - (b) Case (ii) contradicts Gauss's law for magnetic fields.
 - (c) Case (i) agrees with [E.dl=0.
 - (d) Case (ii) contradicts JH.dl=I_{enc}
- 2. At a point on the right bisector of a magnetic dipole the magnetic potential
 - (a) potential varies as $\frac{1}{r^2}$
 - (b) potential is zero at all points on the right bisector
 - (c) field varies as r³
 - (d) field is perpendicular to the axis of dipole
- **3.** In a permanent magnet at room temperature.
 - (a) magnetic moment of each molecule is zero
 - (b) the individual molecules have non-zero magnetic moment which are all perfectly aligned
 - (c) domains are partially aligned
 - (d) domains are all perfectly aligned
- **4.** A magnet with moment Pm is given. If it is bent into a semi-circular form, it's new magnetic moment will be
 - (a) $\frac{P_m}{\pi}$
- $(b)\frac{P_m}{2}$
- (c) P_m
- (d) $2(\frac{P_m}{\pi})$

Short Answer Type Qs (2 & 3 Marks)

- A proton has spin and magnetic moment just like an electron. Why then its effect is neglected in magnetism of materials?
- 6. Three identical bar magnets are riveted together at centre in the same place as shown in figure. This system is placed at rest in a slowly varying magnetic field. It is found that the system of magnets does not show any motion. The north-south poles of one magnet are shown in figure. Determine the poles of the remaining two.

C.B.S.E BOARD EXAM

- Suppose we want to verify the analogy between electrostatic and magneto static by an explicit experiment. Consider the motion of (i) electric dipole p in an electrostatic field E and (ii) magnetic dipole M in a magnetic field B. Write down a set of conditions on E, B, p, M so that the two motions are verified to be identical. (Assume identical initial conditions).
- 8. Use (i) the Ampere's law for H and (ii) continuity of lines of B, to conclude that inside a bar magnet, (a) lines of H run from the N pole to S pole while (b) lies of B must run from the S pole to N pole.
- **9.** Explain quantitatively the order of magnitude difference between the diamagnetic susceptibility of $N_2(5\times10^{-9})$ (at STP) and $Cu(10^{-5})$.
- **10.** Verify the Gauss's law for magnetic field of a point dipole of dipole moment M at the origin for the surface which is a sphere of radius R.
- 11. A bar magnet of magnetic moment M and moment of inertia I (about centre, perpendicular to length) is cut into two equal pieces, perpendicular to length. Let T be the period of oscillation of the original magnet about an axis through the midpoint, perpendicular to length, in a magnetic field B. What would be the similar period T' for each piece?
- A solenoid has a core of a material with relative permeability 400. The windings of the solenoid are insulated from the core and carry a current of 2A. If the number of turns is 1000 per metre, calculate (a) H (b) B (c) M and (d) the magnetising current I_M .

Long Answer Type Qs (5 Marks)

C.B.S.E BOARD EXAM

- (a) Show that the time period (T) of oscillations of a freely suspended magnetic dipole of magnetic moment (m) in a uniform magnetic field (B) is given by $T=2\pi\sqrt{\frac{1}{mB}}$
 - Where I is moment of inertia of the magnetic dipole.
 - (b) Identify the following magnetic materials:
 - (i) A material having susceptibility $X_m = -0.00015$.
 - (ii) A material having susceptibility $X_m = 10^{-5}$.
- 14. Verify the Ampere's law for magnetic field of a point dipole moment $m=m\hat{k}$. Take C as the closed curve running clockwise along
 - (a) The z-axis from z=a>0 to z=R.
 - (b) along the quarter circle of radius R and centre at the origin, in the first quadrant of x-z plane,
 - (c) Along the x-axis from x=R to x=a.
 - (d) Along the quarter circle of radius a and centre at the origin in the first quadrant of x-y plane.
- What are the dimensions of χ , the magnetic susceptibility? Consider an H-atom. Guess an expression for χ , up to a constant by constructing a quantity of dimensions of χ , out of parameters of the atom: e, m, v, R and μ_0 . Here, m is the electronic mass, v is electronic velocity, R is Bohr radius. Estimate the number so obtained and compare with the value of $|\chi| \sim 10^{-5}$ for many solid materials.

Phone: 7678250287 Page - 3 Website: www.bhautikstudy.com

C.B.S.E BOARD EXAM

	HINTS AND ANSWER
1.	(b)
2.	(b)
3.	(d)
4.	(d)
5.	The effect of magnetic moment of proton is neglected ass compared to that of
_	electron. N
6.	S S
	N S
7.	P=m/c
8.	(A) The lines of B must run from south poles(S) to north pole (N) inside the bar magnet.(B) The line of H must run from N pole to S pole inside the bar magnet.
9.	The order of magnitude difference between the diamagnetic susceptibility of N_2 and Cu is 10^{-4} .
10.	It is a Derivation type where you verify Gauss's law for magnetic fields, which states
11.	that the net magnetic flux through a closed surface is zero. T'=T/2
12.	$(A) 2 \times 10^3 \text{ A/m}$
12.	(B) 1.0 T
	$(C) 8 \times 10^5 \text{ A/m}$
13.	(D)I _m =794A. (A) Derivation Type
13.	$T=rac{2\pi}{\omega}=2\pi\sqrt{rac{I}{mB}}.$
	(B) (i) Diamagnetic
4.5	(ii) Paramagnetic
14.	Part of Derivation (A)
	V-7

C.B.S.E BOARD EXAM

You Tube Solutions For JEE and NEET